	[image: image2.png]

 Internationalisation Guidelines
	<July 20, 2008>

	
 Internationalisation Guidelines
	<July 20, 2008>

Internationalisation Guidelines

0. Document Control

0.1 Contents

1

0. Document Control

0.1 Contents
1

0.2 Changes History
1

0.3 References
2

0.4 Terms and Abbreviations
2

1. Introduction
3

2. General Internationalisation Considerations
4

3. Localisation
6

References

 [1]
Developing International Software For Windows 95 and Windows NT

Nadine Kano

Microsoft Press

Available on MSDN.

 [2]
DBCS Enabling for Internationalisation

Ref: Products/Technical Notes/DBCS Enabling

0.2 Terms and Abbreviations

	Term/Abbreviation
	Meaning

	DBCS
	Double Byte Character Set.

A specific type of MBCS where some characters are represented by one byte, and some characters are represented by two bytes.

	MBCS
	Multibyte Character Set.

A mixed width character set, in which some characters are represented by more than one byte.

	UI
	User Interface

Introduction

This technical note discusses the coding practices to use when producing software which is to be translated into other languages and marketed world-wide.

Internationalisation describes the generic coding and design issues involved in creating internationalised software. Internationalised software does not make assumptions based on any particular language or cultural convention. An example of information which appears differently depending on cultural convention is a date, which could be displayed as 31/05/1999, 5/31/99, or 99.05.31, etc.

Internationalised software can then be translated and customised for a specific market. This translation and customisation process is known as localisation. Localisation can include translating the user interface, resizing dialog boxes, customising features, and testing results to ensure that the program still works.

Internationalisation is sometimes written ‘I18N’ since there are 18 letters between the ‘I’ and the ‘N’. Similarly, localisation is sometimes written ‘L10N’.

The main goal of internationalisation is to enable the production of different language editions which provide a consistent look and feel and the same level of functionality and quality.

The source code should simplify the localisation process as much as possible, by isolating those areas which require localisation. Ideally, there should be a single core code base for all language editions. Whatever needs to be changed for a different language edition should be able to be done quickly, easily, and without breaking features.

 General Internationalisation Considerations

The following is a list of recommendations for writing internationalised code.

1. Anything that is visible in the UI will be translated, and therefore must not be hardcoded. Do not hardcode localisable elements such as strings, characters, or constants. Put these localisable elements into separate files, such as resource files, form files, or header files. Resource files are preferable to header files for Windows components since changes to header files will require a new compilation.

If text is hardcoded, the only way to localise it is to edit the executable file. This is difficult and expensive.

2. Use established terminology, good grammar, and clear English in the UI to make the localiser’s job easier.

If the UI contains obscure words or poor English, then the localiser will have difficulty translating the text, and may have to consult the developers for an explanation.

3. Make buffers and UI controls large enough to hold translated text. When text is translated from English into another language, the resulting text is likely to be longer in length. The cost of localisation will greatly increase if the localisers have to resize user interface controls. As a general guideline, leave room for 50% expansion, or 30% at the absolute minimum.

For example, consider an e-mail client which has a label containing the word “To:”. The Finnish translation of this word is “Vastaannottaja:”. If the label in the UI is not long enough to display this translated text, then it will need to be resized by the localiser, which may, as a result, require the entire form to be rearranged.

4. Avoid putting text in bitmaps and icons where possible. This will ensure that such items do not have to be localised. Text in a bitmap or icon is difficult to reproduce and therefore expensive to localise.

5. Avoid using bitmaps, icons, or images which are specific to a particular culture. Keep images international.

For example, this bitmap
[image: image1.png]

 means “OK” in the USA, but is considered to be offensive in some European cultures.

6. Avoid multi-purpose strings. The same string may not be suitable in all contexts in another language.

For example, the word “None” is translated into German as “Kein”, “Keine”, “Keiner”, etc. depending on the context.

7. Do not assume a particular word order. The result of concatenating strings in one language may not make sense in another language which has a different word order.

For example, it may be tempting to use concatenation to produce strings such as:

"Not enough memory to open the file FileName1."

"Not enough memory to save the file FileName1."

But the Finnish translation of this text has a different word order:

"Liian vähän muistia tiedoston FileName1 avaamiseen."

"Liian vähän muistia tiedoston FileName1 tallentamiseen."

8. Do not limit character parsing to Latin script.

For example, when checking if a character is a letter of the alphabet, do not simply check if it is in the range A-Z. If possible, use an operating system call instead, such as the Win32 API call IsCharAlpha.

9. Query the operating system locale before displaying dates, times, the thousands separator, a currency symbol, or the decimal point. This will ensure that the correct format is used for such elements.

For example, a date would be displayed in the UK as 31/05/1999, in the USA as 5/31/99, in Finland as 31.05.99, and in Sweden as 99/05/31.

10. Sorting should take into account the current locale, since the order in which strings are sorted varies from country to country. This can be achieved by using operating system calls.

For example,

· English sort order is
A, B, C, …

· German sort order is
A, Ä, B, C, …

· Finnish sort order is
A, B, C, … X, Y, Z, Å, Ä, …

1. If the software is to run on Far Eastern systems, ensure that the program code is correctly DBCS enabled so that character data does not become corrupted. More details on this topic are given in [2].

Localisation

Localisation is the process of translating and customising the user interface of a program for a specific market. It is carried out by specialists in the target language.

When internationalising software, the localisation process should be taken into consideration. In particular, strings which are not to be translated should not be placed in resource files that are passed to language specialists for translation. These specialists should not be expected to know which strings should stay in English.

For example, the error descriptions of stack exceptions are useful only to support personnel, and so should remain in English. These strings should either be hardcoded or placed in resource files which are not sent for localisation.
CONFIDENTIAL

CONFIDENTIAL

1
	 Feature Creep Ltd
	Page 2 of 6

.

_1016363876

